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Abs t r ac t - -S hea r  zones may  be classified into brittle, bri t t le-ductile,  and ductile shear  zones.  The  geometry  and 
displacement  boundary  condit ions of these zones  are established. The  geometr ic  characteristics of ductile shear  
zones relevant  to geological studies are described: or ientat ions and values of principal finite strains, rotation, and 
deformat ion  features  of pre-exist ing planar  and linear structures.  Ducti le  shear  zones  show a fabric (schistosity 
and lineation) related to the  finite strain state. The  me thods  for de termining strains and displacements  f rom field 
studies are described. 

Shear zones commonly  occur in conjugate  sets, but  the two differently or iented sets do not  seem to be able to 
operate  synchronously.  The  angular  relat ionships of  conjugate  ductile shear  zones are different from those of 
brittle shear  zones.  

The  terminat ion of all types of shear  zones  poses complex compatibili ty problems,  some  solutions are sug- 
gested. 

A synthesis  of shear  zone geometry  in regions of crustal contraction and crustal extensions  is made,  and ideas 
on how deep level ductile shear  zones relate to high level brittle shears  and gliding nappes  are put  forward. 

TYPES OF S H E A R  ZONES amount of coherent permanent  deformation, and it 
appears that the extension fissures developed at some 

G~r~gna~oss Of geologists studying the natural stage of the deformation when a certain limit to coherent 
deformations of the Earth 's  crust have noticed that high flow in the zone was reached. The third type of shear 
deformations are often localised in narrow, sub-parallel deformation is that of the d u c a l e  shear  zone. Here the 
sided zones, and those have been loosely termed shear  deformation and differential displacement of the walls is 
zones ,  accomplished entirely by ductile flow, and on the scale of 

F a u l t s  or brittle shear  z o n e s  are special varieties of the rock outcrop no discontinuites can be seen (Fig. ld).  
shear zones, where a clear discontinuity exists between Marker  layers in the country rock can be trac6d through 
the sides of the zone, and where the shear zone walls are the shear zone, they are deflected and may change their 
almost unstrained or perhaps brecciated (Fig. la).  Such thickness, but they remain unbroken. Ductile shear 
fault zones are generally attributed to brittle failure con- zones are extremely common in deformed crystalline 
trolled by the limiting elastic properties of the rock basement rocks (granites, gabbros, gneisses) which have 
under orogenic stress. Other fault-like features show been deformed under metamorphic conditions of 
some ductile deformation in the walls, and are perhaps greenschist, blueschist, amphibolite and granulite facies. 
best termed brittle, duct i le  shear  zones .  T h e  walls may They seem to be the dominant deformation mode 
show permanent  strain for a distance of up to 10 metres whereby large masses of physically rather homogeneous 
on either side of the fault break (Fig. lb). In the past rock can change shape under medium to high grades of 
these distortions have often been attributed to localised metamorphism. The mineralogy of the rock in the duc- 
drag effects as the adjacent walls of the fault moved past tile shear zone usually shows the characteristics of the 
each other, and the distortion of marker layers of rock metamorphic facies under which it developed. It is 
entering this zone of flow have been used to determine historically interesting as well as pertinent to this last 
the approximate movement sense of the displacement point to note that the first understanding of the geolog- 
vector. This latter deduction is not always possible, ical significance of hornblende schist was made from a 
because the geometry of the deflected marker surfaces study of shear zones in the Lewisian rocks of NW Scot- 
in this zone is controlled by the line of intersection of the land by Teall (1885). He was able to trace an 
initial surface and the shear zone, and not by the move- unmetamorphosed basaltic dyke with normal igneous 
merit vector. In brittle-ductile shear zones it is quite pos- mineralogy though an amphibolite grade shear zone, 
sible that the ductile part of the deformation history 
formed at a different time from that of the fault discon- a.Br/r:le ,b. Bmrtle-auet~le c.Brlttle-cluct/le d Ductite 

tinuity. Another  type of brittle-ductile shear zone is the ~ -  . . . . . .  -7 - ~ 
extension failure of extension openings, usually filled I X ,  / i ~  ) /  ~ x ~  i jNx~ / 
with fibr°us crystalline material '  the °penings generally ! xxx~  ~ : / ~  ~ kx'x, I 
making an angle of 30 ° or more with the shear zone and i 
sometimes showing a sigmoidal form. The rock material 
between the extension fissures generally shows a certain Fig. 1. Types of shear zones. 
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Fig. 3. Displacement  fields of ductile shear zones. 

where it was transformed, into a hornblende-  zone are unstrained, then the following displacement 
biotite--oligoclase rock with a strongly schistose fabric, fields are possible: 

The main aim of this contribution is to establish the (i) heterogeneous simple shear  (Fig. 3a); 
geometrical features of shear zones, especially those of (ii) heterogeneous volume change (Fig. 3b); 
the ductile and britt le-ductile varieties, because in many (iii) combinations of (ii) and (i) (Fig. 3c). 
regions these seem to be the deep level counterparts  of 
brittle shear zones and faults seen at higher levels in the For  the mathematical description of the third of these 
crust. Examples of these various types of shear zones are possibilities one should note that the order  of the simple 
illustrated in Fig. 2. shear and volume change components  should be 

specified. In this paper the simple shear component  is 
followed by a volume reduction even though the two 

S H E A R  Z O N E  G E O M E T R Y  effects may hav6 been geologically synchronous. This 
choice leads to mathematically simpler equations than  

The boundary conditions for the geometrically simp- when the two effects are reversed. In all three types the 
lest shear zones are first, that the shear zone is parallel intermediate or Yf axis of the finite strain ellipsoid (axes 
sided, and second, that the displacement profiles along 
any cross sections of the zone are identical. This second i 
condition implies that the finite strain profiles and the 
orientations and characteristic geometric features of 

A p p a r e n t  c o n s t r i c t i o n  
s m a l l  scale s t r u c t u r a l  f e a t u r e s  across p r o f i l e s  are  a lso 

identical - -  these being more easily recognised 
boundary conditions in practical geological terms. 1 ÷et / ( A )  
Although these conditions can never be completely 1 +e 2 ~ Apparent flattening 
realistic because all shear zones have to come to an end 
(their sides must eventually come together  or splay t / .,,v v 
apart, and their displacement profiles must change near ( C e~ ) 
their termination), it is my experience that very many 
shear zones often approximate closely to these over > ( t3 - r e  z~) 
quite large zone lengths. 1 

From the nature of the general displacement equa- 1 1÷ e 2 

tions it can be shown that these boundary conditions 1, e 3 

constrain the types of displacement field (Ramsay & Fig. 4. Strain fields of the ductile shear zones of types (i), (ii), and (iii) 
Graham 1970, pp. 796-798) .  If the walls of the shear shown in Fig. 3. 



t~
 

~
4

 

oo
 

o~
 

~
t o ~D
 

O
0 



Fig. 2 (c) and (d). For caption see p. 87 
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Fig. 2. Examples of shear zones. (a) Conjugate brittle shear zones, Hartland Ouay, N Cornwall. (b) En echelon brittle-duc- 
tile shear zone; quartz filled vein fissures in a sandstone, Millook Haven, N Cornwall. (c) Ductile shear zone in I.x,,wisian 
metagabbro, Castell Odair, N. Uist, Scotland. (d) Ductile shear zone in granulitic gneiss, showing modifications of 
mineralogy, N. Uist, Scotland. The wall of the shear zone shows dark garnet with orthopyroxenes, and this is transformed 
into amphibofite facies mineralogy (hornblende, biotite, clinopyroxene) inside the shear zone (e) Shear zones with volume 
reduction zones in 3urassic limestone, Oastemtal, Central Switzerland. (f) Ductile shear zones with deformed matrix 

gneisses, CristaUina, Ticino, central Switzerland. 

8 7  



Fig. 10. (a) Sigmoidal schistosity fabric produced in a ductile shear zone. (b) Strained xenoliths in a shear zone cutting 
~ani t ic  rocks. Laghetti, Ticino, Central Switzerland. 
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X ~  Y~Zr)  is always contained in a plane parallel to the The deformation zones involving heterogeneous 
shear zone walls. The  types of strain ellipsoid produced simple shear without differential volume change (types 
from these displacement fields are illustrated in the (i) and (iv), Fig. 3a & d) are commonly isochemical and 
graphical plot of Fig. 4. Simple shear (Fig. 4, A) is clearly the proportions of different mineral species across a 
a plane strain (e2 = 0). Heterogeneous  volume reduction zone profile is nearly constant. However ,  the mineral 
leads to progressive ~lattening ellipsoids (Fig. 4, B) and grain sizes and the rock fabric and texture do usually 
the combination leads to a deformation field in the appa- change with the strain variations across the zone. 
rent flattening sector of the diagram. The zones involving combinations of simple shear and 

If the walls of the shear zone are themselves volume change are usually variable in mineralogy, in 
heterogeneously strained, then the displacement plans mineral proportions and in texture and fabric (Fig. 2d). 
can be expressed mathematically as the same as (i) to 
(i'ii) above but with the addition (mathematically a 
matrix multiplication) of a homogeneous  strain compo- S IMPLE S H E A R  ZO N ES  
nent inside and outside the shear zone, i.e. 

(iv) homogeneous  strain combined with simple shear The basic component  in practically all shear zones is 
(Fig. 3d); that of heterogeneous simple shear. It is therefore 

(v) homogeneous  strain combined with volume appropriate to investigate the geometric properties of 
change (Fig. 3e); this type of displacement, to establish how strains are 

(vi) homogeneous  ~train combined with simple shear related to displacement and how the structural features 
and volume change (Fig. 3f) we see in deformed rocks within a shear zone can be 

With these three types the Yf axis of the strain ellipsoids related to displacement and strain. 
will have no specific relationship to the shear zone plane A zone with heterogeneous simple shear can be consi- 
and all principal strain axes will have a variable orienta- dered to be made up of a number  of infinitesimally small 
tion across a profile of the zone. The types of strain (i.e. elements showing homogeneous  simple shear. In such a 
apparent  flattening or apparent  constriction) have no small homogeneously strained element it is mathemati-  
general constraints, and all types areposs ib ledepending cally convenient to relate the x-coordinate direction 
upon the orientations of the various 'componental '  parallel to the shear direction, and the z-axis normal to 
strains, the plane of shear (xy) - -  see Fig. 5. If the top face of an 

Although all six basic types are geometrically separ- initially cube element  is displaced by a distance s, the 
able, it should be noted that their overall visual effect on shear strain ~/(more exactly ~/z~) is related to the angular 
marker  surfaces crossing the shear zone is remarkably shear strain d~ produced by the deflection of the lines 
similar (see Fig. 3). This means that the field geologist initially parallel to z such that 
has to be especially careful in avoiding jumping to 
premature  conclusions as to the displacement field if he ~ = tan 0 (1) 
only observes deformed planar markers.  In my experi- and so s = z tan 0 = z~/. (2) 
ence natural shear zones accord very closely to these six 
models. Some geologists might object  to the inclusion of The deformation matrix is then given by: 

models (ii) and (v) (Fig. 3b & e) which involve differen- [ !  0 ! 1 
tial volume loss under  the category of shear zones, but I 1 (3) 
think it is right to include them for two reasons. First 0 . 
their basic geometric boundary conditions accord with 
those of more 'or thodox '  shear zones where shear is A circle of unit radius drawn on the xz face is deformed 
dominant  (S-bands, Cobbold 1977a); second, their into a strain ellipse with principal semi-axis lengths 
effects on oblique planar markers  are geometrically very along Xf of l + e l  and along Zf of l+e3  (Fig. 6). The 
close to those of shear zones with differential shear values of these strains are given by: 
displacement parallel to the zone walls. It will be shown (1 +el )  2 = ½[2 + ~2 + ~/(~/2+4)I ] (4) 
later that the amount  of volume change across a shear 
zone can be calculated using the displacement of initially e2 = 0 (5) 
plane markers. Deformat ion zones involving only ( l+e3)  2 = ½ [2 + .y2 _ ~(.V2+4)~]. 
volume loss are sometimes called pressure solution zones (6) 
or solution-seams or stripes (Fig. 2e) or P-bands (Cob- 
bold 1977a). These zones are usually deficient in certain The orientations 0' of these principal strains measured 
mobile mineral species compared with their walls. In low from the x coordinate direction is given by: 
to medium grade metamorphic  environments,  where 

_ 2 ( 7 )  such zones are common,  quartz or calcite are usually tan 20' "V" 
removed from the rock leading to a proportional  
increase in relatively immobile components,  such as These two directions originated in two other  orthogonal 
clays, chlorite and micas. These changes in relative directions 0 in the unstrained state given by: 
proport ions of mineral species leads to a characteristic tan 20 - -2  (8) 
colour striping. ~/" 



90 J . G .  RAMSAX' 

The strain is clearly a rotational strain, the finite rotation 
can be derived from: 

tan oJ = tan (0' - 0) = 2 .  (9) f ~ ~  

Any passive plane marker  is displaced by the shear such !~xl, z~d  1 
that, if its trace on the x z  plane makes an initial angle ot i ,  ~1,,~, j ) ~  ~ \ ~  
with the x-direction before deformation and an angle et' ~x z 
after deformation (Fig. 6), then 

cot a '  = cot a + ",/. (10) z-xtan~ "d P~ jJ  
The mathematical relationships refer to a special choice 
of coordinate reference frame such that x is parallel to J ~  
the shear direction. It is sometimes more useful to refer  J l  x t a n  ¢ 
to the displacements with the shear direction at some 
angle `0 to the x-direction. For  example one may be f ~  • x 
interested in computing the effects of subjecting an ele- Fig. 7. Geometry of simple shear with shear oriented at an angle ~ to 
merit to superposed shear zones at differing angles (we the x coordinate axis. 
will discuss this problem later). 

If the shear zone is or iented at an angle `0 to the x- strain rates ~1 and ~3 are related to the shearing strain 
direction, then from the geometry  shown in Fig. 7 an rate gt~x according to 
initial point ( x , z )  is displaced to a new position (xtz 0 ~/~ 
according to the displacement matrix: dl = -~3 - 2 ' (13) 

I 1 - , / s in  ~ cos `0 0 "Y c°s2`0 ] . ( 1 1 )  e2 = 0, 
0 1 0 

-~/sin2~0 0 1 + ~/sin`0 cos and the rate of rotation, or vorticity ,b is 

The values of the principal strains and rotations are 6J = g/. (14) 

identical to those of (4), (5), (6) and (9), but  the orienta- During the first stages of deformation of an initially 
tion of the principal strains is given by homogeneous isotropie body the principal axes of stress 

2 + ~/tan 2,0 
tan 2,0' = . (12) or l, o" 2 and tr 3 will coincide with the incremental strain 

~t + 2 tan 2,0 axes X~, Y~ and Z~ respectively, and the magnitudes of the 
strain rates will be some function of the magnitudes of 
the stresses. As deformation proceeds, however, it is 

s-z ~, ~ very common for the deforming mass to become aniso- 
~ ~ / ~ ~  tropic as a result of the finite strains which build up with 

increasing values of shearing strain ~/. During these 
y mature stages of deformation,  although the principal 

strain rate and ihcremental strain axes X i and Z~ must 
Fig. 5. The geometric features of simple shear, O, angularshearstrain; remain at 45 ° and 135 ° to the x-direction because of 

s, displacement parallel to the x-axis. 
geometric constraints of the process, the principal stress 
axes o-t, and tr 3 will almost certainly be influenced by the 
increasing obliquity of the anisotropic fabric to these 

i ~ - ~z y ,  ta~ ~ ~. strain axes, and are therefore unlikely to coincide with 
\:~ ~ ~  the strain increment axes. 

As simple shear displacement gets larger, the angle e' 
I ~  between the principal finite elongation Xf and the shear 

~_x zone walls becomes progressively smaller (Fig. 8). In 

Fig. 6. The relation of the strain ellipse to shear in a simple shear many naturally deformed rocks found in ductile shear 
system, zones, a statistically preferred orientation of the mine- 

rals is developed in this finite flattening plane, giving rise 
to schistosity or cleavage. Within this planar, tectoni- 

The positions of the principal strain axes for the first cally induced fabric there is commonly a strain related 
small increment of simple shear are from (7) oriented at linear orientation of the mineral components  parallel to 
45 ° and 135 ° to the x-coordinate axis. The incremental the finite greatest extension direction X f  on the schis- 
strain axes X~ and Z~ are identically oriented and coin- tosity plane. Progressive shearing leads to a progressive 
cide with the principal strain rate axes. The principal intensification of these linear fabrics and a change in 
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- - -  The main problem of using this technique occurs 
where the shear displacement gradients are high. For 

• < example, angles between schistosity and shear zone wall 
of 5.7 ° and 2.9 ° imply a difference of displacement of 
10, /and 20~/respectively. With such high displacement 

- ~ x,- - _ , gradients (and high finite strains) very small observation 
" "~" : errors can lead to gross errors in computing the total 

/ / / /  displacement across the shear zone. 
4 ) 

\ / /  / 

Fig. 9. Fabr ic  in a duct i le  s imple  sh ea r  zone .  s =Joy cL~ wh,c~ ,s the c~rea ,~ 

their orientation. Because ductile shear zones generally i ~o~o ,~, ~.~,,/~,s, . . . . . . . . .  

show a maximum displacement gradient in the zone ,/ 
centre (the gradient decreasing towards the margin), it / S _  
follows that the tectonically induced planar fabrics of 
shear zones generally show a characteristic sigmoidal ,h . . . .  ~ .... 
form as shown in Figs. 9 and 10. y= to~ ~ i 

Because the orientation of the XIY  f surface with its ~',, . . . . .  
coincident schistosity is a function of shear strain, it fol- Fig. 11. Ca lcu la t ion  of total  d i s p l a c e m e n t  across  a duct i le  shea r  zone .  

lows that the angle between schistosily and shear zone 
walls can be used to measure the shear zone parallel Deformation of pre-existing planar features 
shear strain, and shape of the strain ellipsoid at that 
point. This technique, originally developed by Ramsay It was pointed out above (equation 10 and Fig. 6) that 
& Graham (1970), can be extended so as to integrate pre-existing planar features have their orientation mod- 
successive finite shear strains across a shear zone profile ified where they pass through a ductile shear zone. It 
and, in so doing, to calculate the total differential should be stressed that the change of angle of equation 
displacement across a zone with heterogeneously 10 only applies to the trace of the original plane mea- 
developed shear strain (Fig. 11). The results of the sured in the xz profile of the shear zone. Although it 
application of this technique on a regional scale are often does not refer directly to the dihedral angle between two 
very striking. For example, Beach (1974) showed that planes, the modification of such dihedral angles can be 
the group of shear zones making up a large movement  easily computed (Ramsay 1967, pp. 504-508) .  Where a 
zone in the frontal part of the Precambrian Laxfordian set of sub-parallel planes crosses a shear zone with a var- 
orogenic belt of NW Scotland has a minimum displace- ying displacement gradient profile, variations in the 
ment of 25 kin, which can be resolved into a horizontal amount of local shear imposed on the layers sets up 
component  of 18 km and a vertical component  of 16 kin. folding with a characteristic similar style (Fig. 12). The 
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axes of these folds are controlled by the line of intersec- displacement features of the shear system (as with the 
tion of the initial plane structure and the xz plane of the similar folds produced by passive layer deflection). For  
zone. Their  axial planes are parallel to the zone, and are example, the fold axes will not generally form parallel to 
located at positions dependent  upon the local changes in y or Yf and they need not lie in the xy shear plane or the 
shear gradient and the orientation of the plane before XfYf plane of the finite strain ellipsoid (Fig. 14). 
shearing (Ramsay 1967, pp. 508-509) .  Variations in If the competent  layer is oriented in a position such 
orientation of the layers can be used to compute finite that it becomes extended by the shearing, then pinch and 
strain values at different positions in the zone (according swell or boudinage structure may be developed (Fig. 
to the relationships of equation 10), and can be used to 13b, iii). The necking directions of these boudins will be 
determine the total shear across a zone. The  practical controlled by the maximum extension directions in the 
application of this technique for calculating displace- layer being sheared and will not in general, be related to 
ments has been shown in a beautiful study of basic dykes the xy plane of the shear zone. In fact the two-dimen- 
passing through shear zones along the Nagssugtoqidian sional strains within the deflected competent  layer are 
orogenic front of west Greenland (Escher et al. 1975). likely to involve both extensions and contractions. Both 
Here  it has been shown that shear zones have led to an buckle folding and boudinage then develop together,  
average 66% crustal shortening of the deep level base- probably one of these being dominant  over  the other  
merit rocks of this orogen over  a distance of about  100 (Fig. 14). 
kin. One further possible complication that can develop in 

competent  layers occurs where the initial orientation 
and value of shear lead to layer shortening followed by 

~ ~ extension. Here  we have the possibility of layers 
developing buckle folds, which subsequently become 
unfolded or boudinaged (Fig. 13c, iii). 

cI I o(> 90"  a J ~ > l e o  ~ c( n . '  Buc+cie "olds 

Fig. 12. Folds of 'similar' style produced by the shearing of passive / ~ ) 
layers. /~ /,. 

' - x  
The change in orientat ion of pre-existing planar fea- 

tures is accompanied by other  geometric modifications. ~, ~<90 ~ ,, -~ ..... ~ ~, .... Bo~,~aq, 
If there is no ductility contrast between the layer and its 
matrix it may either increase (Fig. 13a, i, ii) or  decrease J j 
(Fig. 13b, i, ii) in thickness as a result of passive shearing. / / .... " ~ " 
The conditions for increases or decreases in thickness ~ / ~ °~ 

are specified in Fig. 13. The change of thickness (t to t') is 
r' 

i 
given by: 

t' = sinct-------~'t. (15) c, ~> ~0 c,, ~> ,se-~ c .... <,so 
sina ~o,d, ng ~oudmag@d foldS, 

If the angular conditions are such that 0t>90 ° and ' ) .- / 
or' > 180" -  ~ the progressively sheared layer first thick- ~ / /  1 / 

f l j ens, then thins to its original width (where a' = ! ! 
180°-o,)  and then subsequently becomes thinner than 
its original value. The  reverse sequence - -  thinning fol- Fig. 13. Effects of shear zone deformation on competent layers. 
lowed by thickening - -  can never  occur in progressive 
simple shear. If the layers undergoing shear are not pas- Deformation of pre-existing linear features 
sire, but show a competence contrast with their matrix, 
then mechanical instabilities are set up in the competent  Most pre-existing line elements (e.g. pre-shear zone 
layer which lead to the formation of new structures. If fold axes) become deflected and take up new orienta- 
the layer is shortened during deformation (equivalent to tions in the shear zone. These lines come to lie closer to 
the passive layer undergoing thickening), buckle folds the direction of the shear (x) and move on a plane locus 
develop wi thwavelengthscharac ter i s t icof the th ickness  which connects their initial orientation with the x- 
of the competent  layer, and the extent of the compe- direction (Fig. 15) (Weiss 1959, Ramsay 1960, 1967). 
tence contrast (Fig. 13a, iii). The  orientation of the axes In projection they move on a great circle locus (Fig. 15, 
of these folds depends upon the obliquity o f t he  layer to p, p', p"  and q, q', q") .  The only exceptions to this 
the shear zone. It depends upon the direction of maxi- general rule are those lines which lie in the plane of the 
mum shortening within the surface of the contracting shear zone xy; these show no deflection (Fig. 15, r, r', 
competent  layer and is not simply related to the principal r") .  The axis of principal finite elongation Xf also moves 
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uo.e~ .... d on the xz  plane towards the x-direction (Fig. 15, X'  s, JCS' ). 
- -  . . . . . .  " ~ The geometric effect of the drawing together of ini- 

~, ~rcl . . . .  ke~ tially variably oriented linear directions towards the X s 
direction is particularly striking at high shear strains. 

: Particularly interesting is the effect described by Car- 
~ ~  reras et al. (1977) and Quinquis et al. (1978) where folds 

co,~,e~, Ioye~ outside a shear zone showing slight variations in their 
J axial plunges are deformed in the shear zone so that their 

i' axes show extreme variations in plunge (so called 
'sheath folds'). The interlimb angles of these folds are 

.... ~ _  _ ~ drastically modified in the shear zone according to the 
principles discussed in the previous section and changes 
of fold shapes offer a method for computing shear strain 
values. This effect is shown diagrammatically in Fig. 16. 

b Deformed development of  buck le  folds d boudth~ 

. . ~ - - ~ 1 ~ ' -  ~ o . ~  . . . .  k~ Terminations of  shear zones 
fo ld  hmges ~ ~ . . . . , ~ .  I " \ " 

~:~. . Ductile shear zones can, and in some cases do, come to 
• ~ a stop within the ductile environment. The boundary 

conditions for the ends of shear zones are much more 
• : : i complicated than for those of simple parallel sided zones 

--, ÷ -  ' : ~ with constant displacement profiles used to set up the six 
basic types described earlier. As far as I am aware there 

,~ ,~,p~e are no complete mathematical solutions for the possible 
finite strain and displacement variations where a shear 
zone terminates. However,  one can proceed intuitively, 
and try and arrive at geometric resolutions which fit field 
observations and natural situations. There appear to be 

Fig. 14. Three-dimensional changes m a competent layer in a shear an unlimited range of possible models: Ramsay & 
zone. Allison (1979) have suggested that this range has two 

. 

X / )'IX 

Fig. 15. Deformation of lineations in ductile shear zones. 

a .  Original fold b. After shearing 

,. " ./ ~ - .  i hinge" 

Fig. 16. Deformation of folds in shear zones. 
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end members (Fig. 17). One is a plane strain model, Shear zones with undeformed walls (Figs. 3a, b & c) 
whereas the second is a solution where all displacements 
take place normal to the shear zone (in the y-direction). The displacement fields in all of these types are most 
Both give rise to characteristic strain fields, and the non- conveniently described in mathematical terms by a 
plane strain model sets up constrictive and flattening simple shear component  (~/) followed by a volume 
deformations on ei ther side of the shear zone tip. If the change component  (A) acting normal to the shear zone 
boundary deflections seen in the plane strain model are wails. The  local displacement gradient matrix at any 
constrained, then there wilt be a tendency for the tips of point in the zone can be described by the matrix 
right handed shear zones to bend and propagate in a 
clockwise sense with respect to the main shear zone, and [ i  0 -y ] 
left handed shear zones to propogate  in an anticlockwise 1 0 (16) 
sense (Fig. 18). This effect could be the reason for the 0 1 + A . 
crossing or merging of shear zones of similar displace- The volume change component  affects both the values 
ment  sense that have been recorded in some regions, and orientations of the principal strains 

(1+e l )  2 = ½[1+~/2+(1+A):+ 
a ~ a n e  s t  . . . .  , r , ~ e ,  (e2.o) ~ Non D,ane s t  . . . . .  a*, ( ( l + ' y E + ( l + A Z ) Z - - 4 ( l + A ) 2 )  ½] (17) 

, ; J 

- \ \  - - ; -  -~"'!"', , '  , ( l+e3)  2 = ½[ I+v2+( I+A)  2 -  
[ ; 'i~, >35~'xl ' ; '  ' ( ( l+ 'ye+( l+A- ' )2 - -4( l+A)2)  i] (19) 

~ ~ 2"y(1 +A) 
] ! C~ I tan 20' = (20) 
1 ' . @x x 1 + ~ / 2 - ( 1 + A ) 2  

! ~" ~ \  [ In zones with varying shear and volume change the 
~ ~ . } _ _  ' ! *: \ :' schistosity (XfYf plane) will be sigmoidally shaped, but 

- * X-/ i ! I the shape of these curved surfaces will not be a simple 
e _ _  _ function of shear. 

~-* ~ J Passive line markers making an angle o, with the shear 
L _I i I i i l l  zone walls are deflected in the zone  to make a new angle 
C const r~ t tve  S t r a i n s  (ez.ve) 

at' such that f ficlttet~log stC'ClinS (e 2 *re) 

Fig. 17. Strain pat terns at shear zone terminations,  cote '  -- cotot+'t (21) 
l + A  

These relationships enable the shear and volumetric 
G E O M E T R I C  F E A T U R E S  OF SEtEAIR Z O N E S  components  to be separated. For  example it is possible 

I N V O L V I N G  V O L U M E  C H A N G E  to compute , / a n d  A from the deflections of two diffe- 
rently oriented deflected line (or plane trace) markers 

The geometry of simple shear zones of the type illus- making initial angles of ot and 13 and final angles of et' and 
trated in Fig. 3(a) have been discussed in some detail 13' (Fig. 19a), beeause from (21) it follows that: 
because many of the structural characteristics of shear 
zones accord well with this model.  However ,  this model V =cotacoq3'  -cotl3cotot' (22) 
is not a general one as it involves no volume change. We coted -cotl3 '  
will now discuss the basic geometric features of more and 
general models and establish ways the field geologist can 
separate the various componental  strains and displace- 1 +A = cotet--cotl3 (23) 
ments, cotot' -- cot~3' " 

a. Approach b. Curving t ips c. Intersect ion d. Merging 

Fig. 18. Propagation of shear zones. 
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a.  Sheac ¢~ d d a t i o n  g r a p h s  

" ~ ,.5 J, \1 I .o2 
' -o.4 ,~ ,oi 

"i' r I-o.  

o.ol / \ 
d- -~  

b. c 

N I  'oT ,× L\" %N g \  " \  0' 
k%#%~, 

Fig. 19. C a l c u l a t i o n  of shea r  and  d i l a t ion  c o m p o n e n t s  in shea r  zones .  

Anothe r  practical possibility for computing these two two-dimensional  geometry  on a profile section of the 
components  occurs when a single line m a rke r  is zone (containing the x and z directions of the simple 
deflected, ~md when the direction of principal strain axis shear) can be expressed in a form which enables easier 
0' (schistosity trace on the shear zone profile) can be separat ion of the components :  

measured  (Fig. 19b). Combining (20) and (21) we I a+trV b+dy 1 
obtain a quadrat ic  function for Y: L b ( l + A )  d ( l + A ) J  (26) 

( c o t E o t  ' - -  2cotet 'cot 2 0 ' - 1 )  et 2 - 20 cot et 
where a, b = c, d represent  the 4 terms of the 

(1 + cot 20'cot~)~/ + ( c o t 2 t x  ' - c o t 2 0 t )  ~- 0 
(24) homogeneous  displacement gradient matrix in the zone 

walls related to the shape (ellipticity R) and orientat ion 
The two roots giving -y can then be used with (21) to (0 ')  of the strain ellipse in the wall rocks such that: 
obtain two corresponding solutions for the dilation. 
Both pairs of solutions are mathemat ica l ly  feasible, but a = Ricos:0 ' +R%in20 ', (27) 
it will be  found that  only one pair is geologically feasible, 
the other  pair is spurious (e.g. where I + A  is negative),  b = (R~-R'~)sin0 'cos0 ', (28) 

d = R~sin20 ' +R-~cos20 ', (29) 
Shear zones with deformed walls 

7' = simple shear zone componen t  parallel to the 
Shear zones with deformed walls represent  the most  x-axis, 

general  type of displacement  field as illustrated in Fig. A = volume change componen t  parallel to the y-axis. 
3(f) (Ramsay  & G r a h a m  1970, Coward  1976, Cobbold  The orientat ion (0" )  of the principal strain axes inside 
1977a). For  analytical convenience such a zone may  be the shear zone can now take on quite complex curved 
considered as being made up of three successively forms. Variat ions of ~/ and A can produce trajectory 
imprinted components ;  the first a homogeneous  strain curves passing through angles exceeding 45 ° (i.e. not in 
(and homogeneous  displacement  gradient),  the second a accord with simple shear zone geometry)  and which will 
simple shear component ,  the third a volume change link with principal strain directions in the matrix. At  any 
normal to the zone walls. In three dimensions the local point in the zone the orientat ions of principal strains is 
displacement gradient is given by given by: 

[ l+rv m+s'y nqt~ ] _ 2(l+A)[b(a+d)+,v(b2+d2)] 
o p (25) tan 20"  -(a+lrV)2+(b+dT,)2_(b:+d2)( 1+A)2 ' (30) 

r ( l + A )  s ( I + A )  t ( l+A)_l  

where 1, m . . . t represent  the nine components  of the and the values of these strains in the surface of the pro-  
homogeneous  displacement,  ~/the simple shear compo-  file are: 
nent and A the volume change component .  As pointed 
out previously, the principal strain orientat ions at differ- ( 1 + el )2 = ½[a 2 +/~ + 2yb(a  + d) + (d 2 + b 2) 
ent positions in the shear zone will have variable three-  (y2+(1 +A)2)+((a2+b:+2~lb(a+d)+ 
dimensional  or ientat ion and the strain trajectories ( d 2 + b 2 ) ( y 2 + ( l + A ) 2 ) 2 - 4 ( l + A ) 2 ( a d - b 2 ) 2 ) q ,  

across the zone will take complex curving forms. The (31) 
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( 1  + e 2 )  2 = ½[a 2 + b e + 2~/b(a+ d) + (d e + be) but not chaotic structures with much higher finite strains 
('y2 +(1 + A ) 2 ) - ( ( a 2 + b e + 2 " c b ( a + d ) +  than are found in either of the two individual zones. The 

(dZ+be)(-y2+(l+A)2)2-4(lq--A)2(ad-be)2)½]. (32) geometric features of the intersection generally indicate 
that one shear zone is later than the other  and displaces it 

The angular relationships of line markers outside and (e.g. Fig. 20b,i: the 1-hand shear is later than the r-hand 
inside the shear zone are identical to those given in (21) shear). Why this is so is a point worth discussion. I think 
and are independent  of the values taken by the it is connected with compatibility problems similar to 
homogeneous  strain component  of the zone walls, those existing at the cross-over positions of brittle shear 

These general equations can be used with a computer  zones. The geometric problem is shown diagrammati- 
to solve practical problems for separation of the shear cally inFig. 21. This shows the strains in the sector where 
zone component  -y and dilation A. For  example the solu- the displacements of the two simple shears (of equal 
tions for two differently oriented lines outside (ix and 13) shear strain) are superposed. The strain state produced 
and inside (ot'andl3') the zone are identical to that of by shearing on zone (a) is followed by shearing on zone 
(22) and (23). Another  important  practical way of (b) (Fig. 2 la)  and is not the same as that where shearing 
measuring these components  arises when the eUipticity on zone (a) follows that of zone (b) (Fig. 2 lb) .  The strain 
R and orientation 0' of the strain ellipse in the wails is ellipses have the same ellipticity but their orientations 
known, the orientation of the strain ellipse at a point differ. This may be verified mathematically for all angles 
inside the zone is known (0")and when the deflectionsof of simple shear zone intersections using the displace- 
a single line marker  are available (ct and 0t') (Fig. 19c). ment matrix of (11) first with values of ~, go followed by 
Then  using (27), (28), (29) and (30) the shear strain -% go' = 180°-go, and then reversing the displacement 
component  is derived from the following quadratic order:  the two total displacement matrices are different. 
equation 

a I Ar~cer5or~'s D r l t t l e  fau l t s  b i Duc t i l e  s h e a r  zor~e~ 
0"~ Dulk  1°e~ (be + d2)tan2" ' ( tan2e'  (1 + tan2ct') - 2tana)'/2 ~ ~ / /  

+ 2tan20' ( tan2ab(a+ t O -  tanZ°t'tanct(be + d2) ~ - ~  --7/ i 
\ ~.. / ~ ?0 " -  *,30" " ,,.,,r 

- 2tana tana '  (b(a+ t0 tana  + be + d 2))'y .... ,:~0" / ~ \  ~ S ~ / ~ / ~  
+ tan20,((a  2 + be)tan2a_ (be + d2)tanZa,) , ~--~/ i " 

-2 tanc t tanc t 'b (a+t  0 = 0 (33) . : 

and the value of the volume change then obtained from ~_~ ~Ls z . . . . .  ~ 
(21). The two mathematically appropriate pairs of solu- , , , ,  N . . . . .  , ~ ,  . . . . .  ~ ,~, . . . .  , ~o~,~,,og~ 

tions are then inspected to discover the geologically sig- j . ~  a m  

nificant result, as was discussed previously for the solu- ~ 
~ J 

tion o f  ( 2 4 ) .  ~ i ~  - -  ~ ~ --*,.~, 
A further method of separating volumetric and shear ~ 

components  arises when the ellipticity and orientat ion of ~ ] ~ ,  ~ 
the strain ellipse outside the zone, the ellipticity of the ~ . . . .  
strain ellipse at a point inside the shear zone, and the .... ~ . . . . .  "~,*,~ ~ .... :o~ ,~  . . . . .  ~ 

deflections of a single line marker  are all known. Equa- ' , 
tions (21) and (30) involve only the shear and vol- 
umetric components  as unknowns and can therefore be ~ ' i ~ l l ~ "  mam~ 
used to obtain their values. .., ~ , 

C O N J U G A T E  S H E A R  Z O N E S  J ~ " ~ ' * ~ ' /  
Fig. 20. Comparison of the geometric features of conjugate brittle and 

ductile shear zones. 
Ductile shear zones of types (i), (iii), (iv) and (vi) 

generally occur in conjugate sets. A set of parallel shear The overall structural pattern of a region deformed by 
zones is unable to change the overall shape of a rock conjugate ductile shear zones is very characteristic: 
mass into all possible new configurations, whereas lozenge-shaped areas of relatively undeformed material 
deformation proceeded by two differently oriented sets are bounded by shear zones of right and left handed 
of zones of the six basic types of shear zone can aspect. Such a pattern will be familiar to any geologist 
accommodate  any overall regional shape change. One of who has mapped 'basement '  terrain for it is the normal 
the shear zone sets has a right handed shear displace- deformation style. The dimensions of the lozenge- 
ment, the other  is left handed. One of the most striking shaped areas can vary from the -centimetric to the 
features of the angular relationships of the two sets of kilometric scale. 
shears, which is in contrast to that of brittle shear zones The geometric effect of developing conjugate ductile 
(Anderson 1951), is that it is the obtuse angle (generally shear zones on a series of parallel passive layer marker  
90 °-130 °) between the shears which faces the greatest horizons depends upon the orientation of this layering to 
shortening direction of the system (Fig. 20b,i). At the the bulk strains produced by the conjugate shears. 
intersection of the two conjugate sets one finds complex If the layering is sub-perpendicular to the maximum 
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A o fo l lowed by b ~k ,.,. ~'f~ 

0 L 
Fig. 21. Finite strains at the intersection of ductile shear zones. 

bulk shortening of the whole mass the crossing shear means of thrusting and nappe gliding. These cover strata 
zones give rise to a thinning of the layers, a feature which are commonly of continental shelf facies known to have 
is especially noticeable where the layers pass through the been laid down on crystalline continental type base- 
intersection region of two conjugate shears (Fig. 20b,ii). ment. Where  this basement is exposed in the orogenic 
The pronounced semi-symmetric thinning that occurs at zone it is usually seen to contain ductile shear zones. The 
the shear kone intersection has been termed in ternal  relationships of deep level ductile shear zones with 
boudinage (Cobbold et al. 1971). Internal boudinage, in higher level thrust that accord best with my own experi- 
contrast to normal boudinage, is not dependent  upon ence are shown schematically in Fig. 22. The shortening 
competence contrasts between the boudinaged layer of the basement leads to an uplift of the internal part  as a 
and its surrounding matrix, the neck zone being located result of the crustal thickening. The ductile shear zones 
only by the chance location of the intersecting shears, pass upwards across the basement-cover  unconformity,  
Internal  boudinage is developed in rocks which are and the ductile shear that is common to both basement 
rheologically uniform or practically uniform. This struc- and cover here  accounts for many of the changes in 
ture might be considered to be the ductile equivalent of angular relationships between the two series of rocks. At 
normal faulting (Fig. 20, cf. a,ii & b,ii), higher levels the ductile shear zone is t ransformed into a 

If the layering is subnormal to the greatest extension brittle--ductile zone with the upper  side of the zone 
of bulk strain then conjugatefoldsresult. Such conjugate showing less ductile features than the lower. At  still 
folds need not be genetically controlled by the layering, higher levels the internal deformation of the cover sedi- 
or by the thicknesses of individual beds within the mul- ments becomes less marked and is mostly related to 
tilayer packet  although the planar anisotropy might be displacements associated with flexural slip movements  
the instigator of the shear zones (Cobbold et al. 1971). in incompetent  layers within the succession. The cover 
This conjugate fold structure might be considered as the shortening that is not taken up by these folds is accom- 
ductile homologue of brittle shear zone thrust faults plished by low angle thrusts passing into strata-guided 
(Fig. 20, cf. a,ii & b,ii). 'glide sheets'  (Fig. 23). The thrusts below the glide 

sheets move to progressively higher stratigraphic levels 
outwards from the orogenic zone, making high angle 

R E G I O N A L  D E V E L O P M E N T  OF S H E A R  ZONES:  steps where they cut across competent  layers. The brittle 
R E L A T I O N S H I P S  B E T W E E N  D E E P  L E V E L  shear zone eventually reaches the surface at the thrust 
D U C T I L E  Z O N E S  AND H I G H  L E V E L  B R ~ 1 " L E  toe, 

Z O N E S  
Extension zones 

Of particular interest to structural geologists is the 
behaviour of regional shear zones which pass f rom duc- The structural features of the upper  crustal levels are 
tile types at deep levels to brittle types at higher crustal quite well known from studies of graben and rift systems, 
levels. This problem is of major  importance in discus- but the structural relationships of these high level 
sions of basement-cover  relations in orogenic belts and phenomena  to those of the underlying basement are less 
in zones of regional crustal extension, well known. Moderately to steeply inclined normal 

faults (45 ° to 60 ° ) predominate  at the high levels, the 
Contraction zones fault plane geometry being guided by strata competence,  

being steepest in the most competent  layers (Fig. 24). 
Most, if not all, orogenic belts show an overall shor- Normal  fault displacements over  the irregular fault sur- 

tening of the sedimentary sheets of cover strata by faces lead to geometric features related to compatibility 
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Fig. 22. Relationships of brittle and ductile shear zones: crustal contraction. 

- -  ~ ,  -r-,- v . . . . . . . . . . . . . . . . .  problems in the same way that geometric problems arise 
, I I i  I I I I [ I I I I I I I I I I I . . . . . . . . . . . . . . .  ~ . . . . . . . . .  from pushing low angle thrust sheets across their under- 

~ -  ~ - ~  -~  . . . . . . . .  ~ lying ramps and fiats (Fig. 23). 
~ 2 ~  ~ - ~ + - +  \ ~  At deeper levels the rheological contrastsofthecover 

layers become less marked, and we pass through a lower 
:~ angle brittle--ductile shear zone transition into conjugate 

~o~o~!eo, , o ~ , ~ ,  . . . . .  ~ . . . . . . .  ye,-~ low angle ductile shear zones. These shear zones enable 
Ioc(r lon of bnt t te  s h e e r  z o n e  

the deep crustal levels to extend: they can give rise to 
. ~ .  internal boudinage (Davis & Coney 1979) or to conju- 

gate folding of the layering in the basement depending 
upon the orientation of this layering. Conjugate pairing 

~ ~ ~ T J - ~  of the shear zones is necessary for a complete horst- 
- - ~  graben tectonic pattern at higher levels. Basement- 

angular unconformities will be geometrically ~ r ~ , r - - : ~  r .  cover 
,~ ~,o, modified where crossed by ductile shear zones (see Fig. 
~'~ 24). 

Fig. 23. Fold and fault geometry - -  high level nappes. 
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Fig. 24. Relationship of brittle and ductile shear zones: crustal extension. 
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